The Animation Presentation

Brandon Dahl, Hiroki Witt, Chris Phillips, Kevin Kesicki

Table of Contents

- History
- Modern Industry Standards
- Common problems
- Toolkits
 - Comparison
- C4D -> Unity Demo

History - Oscilloscope

- Tennis for Two
- Pong
- Space War

History - 2D Sprites

- Sprite sheets were used to switch out different sprites to create the illusion of movement
- This method was commonly used in old arcade machines, Atari (1975), the Nintendo Entertainment system (NES) (1983), Super NES (SNES)(1990), and the Sega Genesis (1989)

History - 2D Sprites

History - 2D Sprites

History - Early 3D Graphics

- Maze War (1974)
- Star Wars (1983)
- Wolfenstein 3d (1992)
- Doom (1993)

History - Early 3D Graphics

 Added depth perception to a lot of games, but the animation was still done using sprites

- 3D graphics and animation were greatly popularized throughout the 90s
- Sony Playstation released in 1994
- Nintendo 64 released in 1996

- Several 3D modeling and animation software were released
 - Autodesk 3DS Max (1990) and Autodesk Maya (1998) which both became industry standard for many games
- Geforce 256 released 1999
 - Introduction of Graphical Processing Unit (GPU)

- Rather than switching out sprites, computers now generated the position of vertices in virtual 3d space and would move them to create the illusion of animation
- 3D software introduced several new techniques including:
 - Keyframing
 - Particle Systems
 - Rigging
 - Realistic Physics Engines

History - Motion Capture (MOCAP)

- Star Wars The Phantom Menace (1999)
- Sinbad Beyond the Veil of Mists (2000)
- Final Fantasy The Spirits Within (2001)
- The Fellowship of the Ring (2001)

History - Motion Capture (MOCAP)

 Locates points in a controlled real world space and maps them to equivalent locations in a virtual 3d space

History - Motion Capture (MOCAP)

Modern Industry Standards for games

- Create Animations in 3D modeling/Animation software
 - Autodesk 3DS Max (released 1990)
 - Cinema4d (released 1993)
 - Autodesk Maya (released 1998)
 - Blender (released 1995)
 - Mostly used for personal projects
- Import animations into game engine
- Add game logic to transition between animations

BAD ANIMATION

We Take For Granted What Makes a Good Animation

- Animation requires precision
 - from all angles!
 - differs from movies
- Animation requires detail
 - o models often have well over 100,000 vertices and polygons
 - animations must be able to successfully manipulate each of these to avoid looking amateurish
 - Animations don't just have to be good they need to make the character come to life;
 "pop"

What Can Go Wrong?

- Bad rigging
 - Rig hierarchical set of bones; the "skeleton" of character
 - o If the skeleton isn't correct, how does your animation have hope?
- Poor modeling
 - A poor model will lead to deformations when animating
 - As aforementioned, good models have a massive number of vertices
- Good animation isn't easy!

Sometimes, the Animation Isn't Even the Real Problem

Original Pokemon - Safari zone spinning steps glitch

The Definition of "Bad Animation" has grown

- Depending on available technology, "bad animation" is subjective
 - Early games: bad spritesheets?
 - Modern games: Poor models, rigging, etc.
- In some cases, developers have their "hands tied" when animating

Technology Was at One Time an Excuse

- In the past, games were affected by platform constraints
 - o Madden 2005 (DS) Graphics Engine
 - the athletes are extremely basic geometry and move with a robotic stiffness "-IGN"
 - 4th best DS game of 2004! At least they tried

Modern Games Have Created Lofty Standards

- Great animation in popular games
 - o Batman: Arkham City, The Last of Us
- In Batman: Arkham Asylum, Batman's cape took over 700 animations and 2 years to make!
- These games thus used as the measuring stick
 - Even when perhaps they shouldn't be!
 - Everything else held under a microscope
 - Thus, the "modern" definition of bad animation is much different than in the past

What are byproducts of bad animation?

- People don't take your game seriously
 - Country Justice: Revenge of the Rednecks
- The game loses its immersive aspect
 - "Survival horror"
- It can affect gameplay
 - o GTA 5 "stuck in position" glitch

Lastly, What Went Wrong?

Resident Evil:

- Run button tapped as fast as possible
- Animation of walking up / down stairs skipped

• GTA5:

- Before character can leave animation, they freeze when they enter car
- o they remain in that state when they exit

Country Justice: Revenge of the Rednecks:

• They followed through on their idea to make a game

Standard Toolkits

- Maya, 3ds Max, Cinema 4D, Blender
- Similarities:
- Modeling, rigging, animating, and rendering tools
- Simulation tools
- Texturing tools

Modeling

Maya

3ds Max

C4D

Blender

Rigging

Maya

3ds Max

C4D

Blender

Maya

- Developer: Autodesk, Inc.
- Originally released in 1998
- Compatible OS: Windows, Mac, Linux
- Proprietary (\$185 monthly)
- Key features: Fluid Effects, Bifrost, Classic Cloth, Fur, nHair, Maya Live, nCloth, nParticle, MatchMover, Composite, Camera Sequencer, Maya Embedded Language

3ds Max

- Developer: Autodesk, Inc.
- Originally released in 1990
- Compatible OS: Windows
- Proprietary (\$185 monthly)
- Key features: MAXScript, Character Studio, Scene Explorer, Texture assignment/editing, Constrained animation, Skinning, Integrated Cloth solver, Integration with Autodesk Vault

Cinema 4D

- Developer: Maxon
- Originally released in 1993
- Compatible OS: Windows, Mac, Linux
- Proprietary (\$3,695)
- Key features: Advanced Render, BodyPaint 3D, Dynamics, Hair, MOCCA, MoGraph, NET Render, PyroCluster, Sketch & Toon, Thinking Particles, Xpresso

Blender

- Developer: Blender Foundation
- Originally released in 1995
- Compatible OS: Windows, Mac, Linux
- Free and open-source
- Key Features: B-mesh, internal render engine, Cycles, Keyframed animation tools, Simulation tools, particle system, Python scripting, Blender Game Engine, node-based compositor, Procedural and nodebased textures

Examples

Autodesk Maya and 3ds Max reel 2014: https://www.youtube.com/watch?v=HmGU4cLAxBo

Conclusion

- Maya tends to be considered the most complicated, but is one of the most used in industry
- Maya and 3ds Max are both widely used, both developed by Autodesk,
 Maya more complicated but better for animation
- Cinema 4D is considered easier to learn than the Autodesk packages but is still pretty widely used
- Blender is free and open source so it is one of the most popular for personal, hobbyist, and indie developer use
- Pretty much any modeling and animation can be done in any of these, it mostly comes down to personal preference

C4D Demo

C4D Demo - Reference Image

C4D Demo - Symmetry

File Edit View Objects Tag

C4D Demo - Subdivision Surface

- Catmull Clark for C4D
 - face point created for each original polygon
 - avg of every point in the polygon
 - edge point created for each old edge
 - avg of original edge midpoint + two adjacent face points
 - vertex points created
 - each original vertex has *n* points sharing it
 - **■** (n-3)/n * (old vertex)
 - + (1/n) * (avg of face points for adjoining polys)
 - + (2/n) * (avg of midpoint edges adjoining the old vertex)

C4D Demo - Knife Tool

C4D Demo - More Polys, More Detail

C4D Demo - Extrusion OOPS!

REMEMBER ME???

REMEMBER ME???

C4D Demo - Neck Extrusion

C4D Demo - Head

C4D Demo - Mammoth Monster

C4D Demo - Bridge Tool

C4D Demo - Normals

C4D Demo -Extrude Inner

C4D Demo - Eyes

C4D Demo - Color

C4D Demo - Rigging

C4D Demo - "Skeleton"

C4D Demo - Weight Painting

C4D Demo - Weight Painting

C4D Demo - Weight Painting

Inverse Kinematics (IK Spline)

- "The process of calculating the position in space of the end of a linked structure, given the angles of all the joints.
- mag(f) * SinVect(a,f) * SinVect(b,f) * sign(CosVect(r,f)) * c
 - o **a** = Axis of Joint
 - **b** = Vector representing the Bone
 - o **r** = Orthogonal vector to Plane **ab**
 - o f = Vector from Endpoint to Target ("force vector")
 - o **c** = Scalar Constant
 - SinVect(x,y) = sine of the angle between vectors x & y
 - CosVect(x,y) = cosine of the angle between vectors x & y
 - sign(x) = sign of x (positive, negative, or zero)

C4D Demo - FK Spline (Forward Kinematics)

C4D Demo - Walk Cycle

C4D Unity Demo - Importing Assets

C4D Unity Demo -Animation Controller

```
Any State

Entry

Idle
```

```
public float speed = 0.5F;
public float rotationSpeed = 10.0F;
void Start()
    anim = GetComponent<Animator>();
void Update()
    float translation = Input.GetAxis("Vertical") * speed;
    float rotation = Input.GetAxis("Horizontal") * rotationSpeed;
    translation *= Time.deltaTime:
    rotation *= Time.deltaTime;
    transform.Translate(translation, 0, 0);
    transform.Rotate(0, rotation, 0);
    if (translation != 0 || rotation != 0)
        anim.SetBool("isWalking", true);
    else
        anim.SetBool("isWalking", false);
```

using UnityEngine;

10

12

17

18

19

20

22

23

24

26

28

29 30 31

32 33 34 using System.Collections;

static Animator anim;

public class CharacterController : MonoBehaviour {

C4D Unity Demo - Animated Character

Resources

- http://www.computerhistory.org/timeline/graphics-games/
- History of Computer Animation
 - https://www.youtube.com/watch?v=LzZwiLUVaKg
- History of 3D in video games
 - https://www.youtube.com/watch?v=hTehcvSgyWI
- https://en.wikipedia.org/wiki/Computer_animation
- Subdivision Surfaces
 - O http://www.holmes3d.net/graphics/subdivision/
- Inverse Kinematics
 - http://freespace.virgin.net/hugo.elias/models/m_ik.htm

Resources (Cont.)

- Madden 2005 review http://www.ign.com/games/madden-nfl-2005/nds-692538
- Complex model taken from TurboSquid
- Videos taken from YouTube
- Batman: Arkham Asylum http://uproxx.com/gammasquad/15-fascinating-facts-may-know-batman-arkham-asylum/

Resources (Cont.)

- Maya
- https://en.wikipedia.org/wiki/Autodesk_Maya
- http://www.autodesk.com/products/maya/overview-dts?s_tnt=69290:1:0
- 3ds Max
- https://en.wikipedia.org/wiki/Autodesk_3ds_Max
- http://www.autodesk.com/products/3ds-max/overview-dts?s_tnt=69291:1:0
- C4D
- https://en.wikipedia.org/wiki/Cinema_4D
- http://www.maxon.net/products/cinema-4d-studio/who-should-use-it.html
- Blender
- https://en.wikipedia.org/wiki/Blender_%28software%29
- https://www.blender.org/
- Some Comparisons (of many)
- http://blog.digitaltutors.com/3ds-max-vs-maya-is-one-better-than-the-other/
- http://blog.digitaltutors.com/3ds-max-maya-lt-blender-3d-software-choose-asset-creation/
- http://blog.digitaltutors.com/cinema-4d-3ds-max-motion-graphics/

Questions?